Logistics
Caution
Page under construction: information on this page may change.
What to bring?
- You only need pencil, eraser, student or government id.
- The quiz is closed book (in particular, no electronics, including simple calculator permitted).
Time
We will start promptly at 9:30 (please arrive on time) and end at 10:45 (75 minutes).
Distribution reference
The cover page of the exam will have the following table. Note that compared to last week’s practice, I have added 3 rows, providing two additional parameterizations for the normal, and one additional parameterization for the beta.
Name | Abbreviation | Parameters |
---|---|---|
Bernoulli | \({\mathrm{Bern}}(p)\) | Success probability \(p \in [0, 1]\) |
Binomial | \({\mathrm{Binom}}(n, p)\) | Number of trials \(n \in \mathbb{N}\), success probability \(p \in [0, 1]\) |
Uniform | \({\mathrm{Unif}}(a, b)\) | Left and right bounds, \(a < b\) |
Normal | \(\mathcal{N}(\mu, \sigma)\) | Mean \(\mu \in \mathbb{R}\) and standard deviation \(\sigma > 0\) |
\(\mathcal{N}(\mu, \sigma^2)\) | Mean \(\mu \in \mathbb{R}\) and variance \(\sigma^2 > 0\) | |
\(\mathcal{N}(\mu, \tau)\) | Mean \(\mu \in \mathbb{R}\) and precision \(\tau = 1/\sigma^2 > 0\) | |
Exponential | \({\mathrm{Exp}}(\lambda)\) | Rate \(\lambda\) (\(=1/\)mean) |
Beta | \({\mathrm{Beta}}(\alpha, \beta)\) | Shape parameters \(\alpha > 0\) and \(\beta > 0\) |
\({\mathrm{Beta}}(\mu, s)\) | Mean parameter \(\mu \in (0, 1)\) and concentration \(s>0\) |