Logistics

Caution

Page under construction: information on this page may change.

What to bring?

  • You only need pencil, eraser, student or government id.
  • The quiz is closed book (in particular, no electronics, including simple calculator permitted).

Time

We will start promptly at 9:30 (please arrive on time) and end at 10:45 (75 minutes).

Distribution reference

The cover page of the exam will have the following table. Note that compared to last quiz, additional distributions have been added.

Name Abbreviation Parameters
Bernoulli \({\mathrm{Bern}}(p)\) Success probability \(p \in [0, 1]\)
Binomial \({\mathrm{Binom}}(n, p)\) Number of trials \(n \in \mathbb{N}\), success probability \(p \in [0, 1]\)
Uniform \({\mathrm{Unif}}(a, b)\) Left and right bounds, \(a < b\)
Normal \(\mathcal{N}(\mu, \sigma)\) Mean \(\mu \in \mathbb{R}\) and standard deviation \(\sigma > 0\)
\(\mathcal{N}(\mu, \sigma^2)\) Mean \(\mu \in \mathbb{R}\) and variance \(\sigma^2 > 0\)
\(\mathcal{N}(\mu, \tau)\) Mean \(\mu \in \mathbb{R}\) and precision \(\tau = 1/\sigma^2 > 0\)
Exponential \({\mathrm{Exp}}(\lambda)\) Rate \(\lambda\) (\(=1/\)mean)
Beta \({\mathrm{Beta}}(\alpha, \beta)\) Shape parameters \(\alpha > 0\) and \(\beta > 0\)
\({\mathrm{Beta}}(\mu, s)\) Mean parameter \(\mu \in (0, 1)\) and concentration \(s>0\)
Poisson \({\mathrm{Poisson}}(\lambda)\) Mean \(\lambda > 0\)
Negative Binomial \({\mathrm{NegBinom}}(\mu, \phi)\) Mean parameter \(\mu > 0\) and concentration \(\phi >0\)
Gamma \({\mathrm{Gam}}(\alpha, \beta)\) Shape parameters \(\alpha > 0\) and rate \(\beta > 0\)
Categorical \({\mathrm{Categorical}}(p_1, \dots, p_K)\) Probabilities \(p_k > 0\), \(\sum_k p_k = 1\)
Dirichlet \({\mathrm{Dir}}(\alpha_1, \dots, \alpha_K)\) Concentrations \(\alpha_i > 0\)
Multivariate Normal \(\mathcal{N}(\mu, \Sigma)\) Mean vector \(\mu \in \mathbb{R}^K\), covariance matrix \(\Sigma \succ 0\)