Logistics
What to bring?
- You only need pencil, eraser, student or government id.
- The quiz is closed book (in particular, no electronics, including simple calculator permitted).
Time
We will start promptly at 9:30 (please arrive on time) and end at 10:45 (75 minutes).
Distribution reference
The cover page of the exam will have the following table. Note that compared to last quiz, additional distributions have been added.
| Name | Abbreviation | Parameters |
|---|---|---|
| Bernoulli | \({\mathrm{Bern}}(p)\) | Success probability \(p \in [0, 1]\) |
| Binomial | \({\mathrm{Binom}}(n, p)\) | Number of trials \(n \in \mathbb{N}\), success probability \(p \in [0, 1]\) |
| Uniform | \({\mathrm{Unif}}(a, b)\) | Left and right bounds, \(a < b\) |
| Normal | \(\mathcal{N}(\mu, \sigma)\) | Mean \(\mu \in \mathbb{R}\) and standard deviation \(\sigma > 0\) |
| \(\mathcal{N}(\mu, \sigma^2)\) | Mean \(\mu \in \mathbb{R}\) and variance \(\sigma^2 > 0\) | |
| \(\mathcal{N}(\mu, \tau)\) | Mean \(\mu \in \mathbb{R}\) and precision \(\tau = 1/\sigma^2 > 0\) | |
| Exponential | \({\mathrm{Exp}}(\lambda)\) | Rate \(\lambda\) (\(=1/\)mean) |
| Beta | \({\mathrm{Beta}}(\alpha, \beta)\) | Shape parameters \(\alpha > 0\) and \(\beta > 0\) |
| \({\mathrm{Beta}}(\mu, s)\) | Mean parameter \(\mu \in (0, 1)\) and concentration \(s>0\) | |
| Poisson | \({\mathrm{Poisson}}(\lambda)\) | Mean \(\lambda > 0\) |
| Negative Binomial | \({\mathrm{NegBinom}}(\mu, \phi)\) | Mean parameter \(\mu > 0\) and concentration \(\phi >0\) |
| Gamma | \({\mathrm{Gam}}(\alpha, \beta)\) | Shape parameters \(\alpha > 0\) and rate \(\beta > 0\) |
| Categorical | \({\mathrm{Categorical}}(p_1, \dots, p_K)\) | Probabilities \(p_k > 0\), \(\sum_k p_k = 1\) |
| Dirichlet | \({\mathrm{Dir}}(\alpha_1, \dots, \alpha_K)\) | Concentrations \(\alpha_i > 0\) |
| Multivariate Normal | \(\mathcal{N}(\mu, \Sigma)\) | Mean vector \(\mu \in \mathbb{R}^K\), covariance matrix \(\Sigma \succ 0\) |